Poster Session II

Thursday, 13:30 - 15:00


Diffusion Imaging:

Diffusion Imaging:

0. Novel Bayesian Modeling for Dictionary Learning and Undersampled Reconstruction in Multishell HARDI

Kratika Gupta, IIT Bombay

Suyash Awate, University of Utah, USA


2. Estimation of Tissue Microstructure Using a Deep Network Inspired by a Sparse Reconstruction Framework

Chuyang Ye, Chinese Academy of Sciences

  

Large-scale data analysis:

4. A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies

 Jenna Schabdach, University of Pittsburgh

 William Wells, BWH Harvard, USA

 Michael Cho, Harvard Medical School

 Kayhan Batmanghelich*, University of Pittsburgh

 

 

Brain networks and Connectivity:

6. Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches

 Nahuel Lascano, INRIA, France
 Guillermo Gallardo, Université Côte d’Azur, Inria, France
 Rachid Deriche, INRIA Sophia Antipolis, France
 Dorian Mazauric, Université Côte d’Azur, Inria, France
 Demian Wassermann, INRIA, France

 

8. Estimation of Brain Network Atlases using Diffusive-Shrinking Graphs: Application to Developing Brains

 Islem Rekik, University of Dundee
 Gang Li, University of North Carolina
 Weili Lin, University of North Carolina
 Dinggang Shen,

 

 

Tractography and Tract-based Statistics:

10. HFPRM: Hierarchical Functional Principal Regression Model for Diffusion Tensor Image Bundle Statistics

 Jingwen Zhang, UNC Chapel Hill
 Chao Huang, University of North Carolina at Chapel Hill
 Rebecca Santelli, University of North Carolina at Chapel Hill
 John Gilmore, University of North Carolina at Chapel Hill
 Joseph Ibrahim, University of North Carolina at Chapel Hill
 Hongtu Zhu, UNC Chapel Hill

 

 

Dynamic Functional Connectivity:

12. A Tensor Statistical Model for Quantifying Dynamic Functional Connectivity

 Yingying Zhu, UNC Chapel Hill
 Guorong Wu, UNC Chapel Hill

 

 

Analysis on Manifolds:

14. Stochastic Development Regression on Non-Linear Manifolds

 Line Kühnel, University of Copenhagen

 Stefan Sommer, University of Copenhagen, Denmark

 

 

Disease Progression:

16. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

 Jie Zhang, Arizona State University
 Qingyang Li,
 Richard  Caselli,
 Paul Thompson, USC
 Jieping Ye,
 Yalin Wang, Arizona State University

 

 

Model Understanding:

18. Quantifying the Uncertainty in Model Parameters using Gaussian Process based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models

 Jwala Dhamala, RIT
 John Sapp, Dalhousie University
 Milan Horacek, Dalhousie University
 Linwei Wang, Rochester Institute of Technology

 

20. Weakly supervised evidence pinpointing and description

 Qiang Zhang, University of Warwick
 Abhir Bhalerao, University of Warwick
 Charles Hutchinson, University Hospitals Coventry and Warwickshire

 

 

Neural Networks / Deep Learning:

22. Risk Stratification of Lung nodules using 3D CNN based Multi-task learning

 Sarfaraz  Hussein, University of Central Florida
 Kunlin Cao, CuraCloud Croporation
 Qi Song, CuraCloud Corporation
 Ulas Bagci, University of Central Florida

 

24. Modeling Task fMRI Data via Deep Convolutional Autoencoder

 Heng Huang, Northwestern Polytechnical University
 xintao hu, Northwestern Polytechnical University
 Milad Makkie, University of Georgia
 Qinglin Dong, University of Georgia
 Yu Zhao, University of Georgia
 Lei Guo, Northwestern Polytechnical University
 Tianming Liu, University of Georgia

 

26. On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task

 Wenqi Li, University College London
 Guotai Wang, University College London
 Lucas Fidon, University College London
 Sebastian Ourselin, University College London, UK
 M. Jorge Cardoso, University College London
 Tom Vercauteren, University College London, UK

 

 

Alzheimer's Prognosis:

28. Predicting Interrelated Alzheimer's Disease Outcomes via New Self-Learned Structured Low-Rank Model

 Xiaoqian Wang, Univ. of Texas at Arlington
 Li Shen,
 Heng Huang*, 

Comments